

FIG. 7. The distribution of nuclei about a given nucleus for iron at ten times normal density and  $\lambda=1$ .

and found an effect of only 6.8%. The present DHTF theory gives for iron under these conditions pv/kT = 24.0, and thus a pressure only 4% less than the perfectgas value for the 24-fold ionized atoms assumed by Eddington.

## b. Radial Distribution Functions

In Figs. 5 and 6 are shown the radial distribution functions (5), (24), and (26) for iron at normal density,  $\lambda=1$ , and kT=100 and 1000 ev.

For small r, the density of electrons about a nucleus  $(n_{-+})$  becomes infinite as  $r^{-1}$ , just as in the Thomas-Fermi theory of the atom. As a result of the high electron density near a nucleus (of not too low Z), the distribution of electrons about a typical electron  $(n_{--})$  shows a maximum for relatively small r, and at some larger r,  $n_{--}$  even becomes greater than  $n_{+-}$ . This behavior is particularly pronounced for low temperature and density and for high Z. For Z=1, no maximum in  $n_{--}$  has been observed; this is to be



0.8 0.6 U\*U/` ÷ 4 0.4 kT=10 ov - kT=100 - kT=1000 0.2 0 1.0 0.4 0.6 0.8 1.2 1.4 1.6 r/ro

FIG. 9. The distribution of nuclei about a given nucleus for iron at one-tenth normal density and  $\lambda = 1$ .

expected since in this case, there is only one electron per nucleus and consequently no strong bunching of several electrons about each nucleus.

The distribution of nuclei about a given nucleus  $(n_{++})$  is shown in greater detail in Figs. 7 to 9, which correspond to the cases pictured in Figs. 2 to 4, respectively. For a given density, the effect of an increase in temperature is qualitatively what one would expectan increase in  $n_{++}$  at small r and a decrease at large r. However, at low density (Fig. 9), the effect is quantitatively abnormal; on the scale of the figure, the only perceptible change in  $n_{++}$  on increasing kT from 10 to 100 ev is a decrease everywhere. This behavior is more pronounced the lower the density and the higher the value of Z. It is closely related to the fact that in the zero-temperature limit,  $n_{++}$  tends to a step function with the step at a radius  $r_1$  which is less than  $r_0$ , this last being the radius of a sphere whose volume is the average volume per atom  $(4\pi r_0^3/3 = n_{+0}^{-1})$ .

The reason why  $r_1$  is less than  $r_0$  is easily seen. At zero temperature, the normalization condition (19), (20) reduces to



FIG. 8. The distribution of nuclei about a given nucleus for iron at normal solid density and  $\lambda = 1$ .

FIG. 10. Temperature dependence of energy for iron at normal density ( $\rho$ =7.85 g/cc). The dotted curve is for a mixture of nuclei and electrons without electrostatic interactions.

270